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1

The Hermite-Fejér interpolation process is an important method of
approximation in the theory of approximation by interpolation. For a given
family of points

—1 <Xy < < Xy < 1, n=1,2,..

and a function f on [—1, 1] the Hermite-Fejér interpolatory polynomial
H,(f, x) of degree <\2n — 1 is defined by

Holfy Xim) = [ Gy Holfs ) = 0,k = 1, 2,..., . (1.1

The approximation properties and the rates of convergence of the sequence
{H,(f, x)} have been studied extensively when the points x;, , k = 1,2,..., n
are the zeros of the classical orthogonal polynomials.

In the simplest case, when x, == cos(QRk — 1)=/2n), k = 1,2,...,n,
are the zeros of the Chebyshev polynomial T,,(x) = cos(n arc cos x), we have

T(x) )2

(X — Xzn)

Ho(f; %) = Y, faa)(l — xxe0)( (1.2)
k-1

195
0021-9045/79/070195-09802.00/0

Copyright © 1979 by Academic Press, Inc.
All rights of reproduction in any form reserved.



196 BOJANIC, PRASAD, AND SAXENA

According to a well-known result of L. Fejér [8],
lim H,(f, ) = f(x),

uniformly on [—1, 1], for every f continuous there. A quantitative version of
Fejér’s result was given by R. Bojanic [5] who proved that

A0 = £ <5 3 () (13)

where w; is the modulus of continuity of fon [—1, 1] defined for every # = 0
by

wf(h) = sup{lf(x) _f(J’)iix,ye [_19 1]9 1 X _yl < h}

R. B. Saxena [10] further improved this inequality by showing that

(1 — x2)i2 1 )

H) = 10 < 3 (S g (14)

The situation is quite different for the Hermite—Fejér interpolation process
based on the zeros

k
Xpp =COS———m, k = 1,2,..., 1,

n+1

of the Chebyshev polynomial of the second kind, U,{(x) = sin{(r + 1)
arc cos x)/(1 — x?)1/2, In this case we have

_ v 3%Xpn(X — Xpn) 2 2 Un(x) 2
Hf,) =%, FCan(1 = TG — 5t )2 (e 5 ).

kn

The sequence { H,,(f, x)} converges to f(x) pointwise on (—1, 1) and uniformly
on every closed subinterval of (—1, 1). At the end points —1 and 1, however,
the sequence diverges. We have

Hn(f; Ztl) = i (1 :F Xgn — zxzn)f(xkn)

and so
: Hn(f; Zi:l) 2 k’ﬂ‘ k7T
111«1;2 n nglon;l(lq:cos +1 — 2 cos n+1)f(n+1)

_—f AF e +29f() —57 = 2)1/2

(see [14, p. 341)).
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In a case like this, it is natural to consider Egervary-Turdn’s [7] modifi-
cation of Hermite-Fejér’s interpolation which consists in the inclusion of
the end points —1 and 1 in the process of interpolation. We define a
polynomial Q,(f, x) of degree <2n 4+ 1 by

However, in view of the relation

QMﬂ:MMﬂ+UFD—mm_mG%%%%ﬂy

LW

+ () = H( D351

where W, (x) = (x — x1,)(X — Xpp) *** (X — X,,), the Egervdry-Turdn modi-
fication is interesting only if the original sequence { H,(f, x)} is not uniformly
convergent on [—1, 1]. If x,, = cos((2k — 1)n2n), k = 1, 2,..., n, we have

1+ x

0.1, %) = (- —1) T,2(x)

+a—xaiﬂna“+x”"4“”( )

(1 —x3,) n(x — Xyn)

and from (1.6) and (1.4) it follows immediately that

IQAﬂﬂ—ﬂ@l-fi (=2 5.

k=1

A weaker form of this result was obtained earlier by D. L. Berman [4] by a
different procedure. If x;,, = cos(kn/(n + 1)), k = 1, 2,..., n, then

)T

o 7 . Un(x) 2
+ (1 — x?) gl FGan)(1 Xxkn)( (n + D)(x — xXen) )

1+ x

0., %) = (—

and the problem of uniform convergence of the sequence {Q,(f, x)} becomes
more difficult since (1.6) cannot be used anymore. However, it was proved
by P. Szdsz [13] that, in this case too, {Q,(f, x)} converges uniformly to f(x)
on [—1, 1]). His result was improved by R. B. Saxena and K. K. Mathur [11]
who showed that in this case also we have the inequality

0f0—f@ <5 Y e (U2 g5)
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A similar result was obtained by J. Prasad and R. B. Saxena [9] for the
Legendre nodes.

A further extension of the interpolation process which required that the
derivative of the polynomial vanishes not only at the interior points x;, ,
k =1,2,.,n, but also at the end points —1 and 1, was studied by D. L.
Berman. This time, however, the extension led to unexpected developments.
Berman considered the Hermite—Fejér process of interpolation defined by

RS, Xkn) = 0, Ru(f, £1) = 0.

If x4, kK =1,2,...,n, are the zeros of the Chebyshev polynomial T,(x),
then

R %) = F)1 -+ @i 4 11— (L2 7,0

(1.9)

1 —x

A+ @ D+ (L E 1)

n 1+ 3xx, —4x2, 1 Tux) |2
4 (1 — x%)2 k;f(xkn) T— ) : ( n(x — x,,) ) '

Berman proved in [1], [2] that {R,(f, x)} diverges at every point of (—1, 1)
if f(x) = x* and (with the exception of the point x = 0) if f(x) = x.
Berman’s results for these two special functions were generalized by R.
Bojanic [6] who showed that {R,(f, x)} diverges on (—1, 1) for every f,
continuous on [—1, 1], which has left and right derivatives f;(1), fz(—1),
not both 0. More precisely, it was proved in [6] that

lim sup | Ry(f, x) — f(X) = #(1 — (1 + x)fi1) — (1 — x) fr(=1)
whenever f;(1) and f x(—1) exist, and that, for such functions, the conditions
Siul) =0, fa(—=1) =0

are necessary and sufficient for the uniform convergence of the sequence
{R(f, ¥)} on [—1, 1].
The situation is quite different if x;,, , k = 1, 2,..., n, are the zeros of the
Chebyshev polynomial U,(x). In this case we have
2
Rl ) =St + (3t + Fn 1)1 — ) (25
(1—x) Un(x))2

= fD(1+ (G 3 1)+ ) 201 + 1)

4+ (1 — x?)? ’élf(xkn)( L= fxinxgnzxi" )( (n + gELJ(CX)— Xin) )2 )
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For these polynomials R,(f, x) with f continuous on [—1, 1], Berman
proved in [4] that the sequence {R,(f, 0)} converges to f(0). Subsequently,
he proved in [3] that {R,(f, x)} converges to f(x) for every x € [—1, 1] and
that the convergence is uniform on each [—1 461 —¢€], 0 <e <1
R. B. Saxena [12] improved Berman’s result by showing that the convergence
1s uniform on [—1, 1].

In the present paper we shall study the rate of convergence of the sequence
{R,(f, )} defined by (1.10), i.e., by (1.9) with x;, = cos(kw/(n + 1)),
k =1, 2,..., n. Our method is based not on the explicit representation (1.10)
of R,(f, x) but on the following relation between the polynomial Q,(f, x),
defined by (1.5), and R,(f, x), defined by (1.9):

Ri(h3) = Qa0 + (1 = (S5 2 ) 0141y
-+ (0525 i - (1.11)

and on the fact that for the polynomial Q,(f, x) the estimate (1.8) holds.
Our main result can be stated as follows:

THEOREM 1. Let f be a continuous function on [—1, 1] and let R,(f, x) be
the polynomial of Hermite-Fejér interpolation defined by (1.9), with x;, =
costkni(n + 1)), k = 1, 2,..., n. Then for all xe[—1, 1],

| Ralfy %) — F()] < %Z (1%‘2)1/2+—k12~)+§— (1.12)

k=1

where A and B are positive constants.

If fis a non-constant function, we have

]
<(Gm)a ko 2 ),

so that,

RS %) — f(0)] < giw4ﬂgﬁf+%ﬂ. (1L13)
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2. SoME LEMMAS

The proof of Theorem 1 is based on two lemmas. The first is a transfor-
mation of the basic relation (1.11).

LemMmAa 1. If the polynomials Q.(f, x) and R,(f, x) are defined by (1.5)
and (1.9), respectively, then

R/, X) = Qulf, X) + Z— L= X)) — f(=1)

A(n + 1)?
o =+ 9 U0 (1) — ey § )
n(n 'Jf_ 2) 2 2 s f(xkn)
o 4 = = ) VA ) — ety 3 ).

Proof. Differentiating (1.7) and using the formulae
UD) =n+ 1L, U(=D) =(=D"(n+ 1
and
Un()) = §n(n + D@ + 2), Up(—1) = (=1 n(n + 1)(n + 2),
we see that

4

0 ) = (54 S

l—x;‘m

) 0 =31 2 3 Sl
and

Substitution into (1.11) yields the desired result.

Our next lemma is a quantitative version of a theorem of Berman [4]
which states that for every continuous function f on [—1, 1] and for
Xxn =coslkmw/(n -+ 1),k =1,2,..,n,

lim 7 2 o = U A=),
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LEMMA 2. Let f be a continuous function on [—1,1] and let x;, =
cos(tkw/(n + 1)), k = 1, 2,..., n. Then

3 f(xkn)

‘f(:tl) n(n+2)zlin,m \n—i—lg‘ ( )
Proof. 1t is clearly sufficient to consider one choice of signs. Since
i 1 U  nn+2)
Sl —x, U 3 ’
we have
A= [0 - s 21
_ f: £() — f(xin)
n(n + 3) I — Xy
OB iCT
<n(nJ,—2)Z 1 — X
Hence
A wf(l xkn)
4D < o kzl S
Since
1 — x;,, = 25sin? (—kﬁﬂ—»—)
kn 2(’1 + ]) ’
we have
2k 2 k2m? 772 k? 5k2
1) _w_((n+ 1)2) <1 =X \7((n+ 1)2) STEIES
Consequently
AN <15 Y o (o) @
" AR N+ 1) .

Next, for every 1 << k < n,

(k+1) /(n-+1) wf(tz) k2 (k+1) /(n+1) dt
dt > S — —
fk/(nm 2 = s ( (n + 1)2) ‘[k/(n+1) 12
_ n+1 k2
"k + 1) ‘“f((n T 1)2)

n+1 ( k2 )

Z CEN)
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So

n

(k+1) j(n+1) wf(tz) i

| k2 2
kz::lpwf((” + 1)2) < n+1 .2 fk/('rH—l) e

2 1 w(t?)
= dt
n-41 1/(n+1) 2

- erl L " (_112—) dr. 2.2)

Using the inequality

we have
fl " (—:2—) it <y o (%) . 2.3)

From (2.2) and (2.3) we obtain

él_kl_z_wf((nf—zl)z)gnil i‘%(%) (2.4

Finally, (2.1) and (2.4) imply

30
A <

Theorem 1 is now simple consequence of Lemmas 1 and 2. By
Lemma 1,

| Rulf, X) — ()

(1 —x» U,*(x)
<@/ ) = f() + W—(if(l)l + 1/(=DD

3
n(n + 2) =

+ (1= x) U] (1) —

+ (1 —x?) U,ﬁ(x)lf(— n(n + 2) Z ]fS_C’“;L .
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Using (1.8), the inequality (I — x?) U,%(x) < 1, xe[—1, 1], and Lemma 2,
we find that

O R K e

k=1

and Theorem 1 follows.
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